Refactoring

Separate gates into separate files
Implement layer builder
master
D4VID 3 weeks ago
parent df70909542
commit 3d983f0b5d

@ -0,0 +1,270 @@
use std::cmp::max;
use logicworld_subassembly::{lw, COMPONENT_MAP};
use vecmath::{vec3_add, Vector3};
use crate::router::{Connection, ConnectionMap, SQUARE};
use crate::verilog::Cell;
pub fn binary_op(
cell: &Cell,
text_id: &str,
parent_address: u32,
next_address: &mut u32,
next_position: &mut Vector3<i32>,
wires: &mut Vec<lw::Wire>,
connection_map: &mut ConnectionMap,
) -> Vec<lw::Component> {
// All binary RTL cells have two input ports \A and \B and one output port \Y. They also have the following parameters:
// Set to a non-zero value if the input \A is signed and therefore should be sign-extended when needed.
let a_signed = cell.parameters["A_SIGNED"] > 0;
// The width of the input port \A.
let a_width = cell.parameters["A_WIDTH"];
// Set to a non-zero value if the input \B is signed and therefore should be sign-extended when needed.
let b_signed = cell.parameters["B_SIGNED"] > 0;
// The width of the input port \B.
let b_width = cell.parameters["B_WIDTH"];
// The width of the output port \Y.
let y_width = cell.parameters["Y_WIDTH"];
assert!(a_width == b_width, "Different widths not yet supported");
assert!(!a_signed && !b_signed, "Signed not yet supported");
assert!(
a_width == y_width,
"Different widths of input and output not yet supported"
);
let mut components = vec![];
let height = max(max(a_width, b_width), y_width);
builder(
height,
parent_address,
next_address,
next_position,
&mut components,
wires,
connection_map,
|i_bit, next_address, parent, next_position_within, components, wires, connection_map| {
let input_a = lw::Input::new(cell.inputs["A"][i_bit] as i32);
let input_b = lw::Input::new(cell.inputs["B"][i_bit] as i32);
let output_state_id = cell.outputs["Y"][i_bit] as lw::Int;
let output = lw::Output::new(output_state_id);
if text_id == "Custom.OrGate" {
let input_a = lw::Input::new(cell.inputs["A"][0] as lw::Int);
let input_b = lw::Input::new(cell.inputs["B"][0] as lw::Int);
let output_a = lw::Output::new(output_state_id);
let output_b = lw::Output::new(output_state_id);
let peg = lw::Input::new(output_state_id);
let buffer_a = lw::Component {
address: *next_address,
parent,
numeric_id: COMPONENT_MAP["MHG.Buffer_WithOutput"],
position: *next_position_within,
rotation: quaternion::id(),
inputs: vec![input_a],
outputs: vec![output_a],
custom_data: vec![],
};
let buffer_b = lw::Component {
address: *next_address + 1,
parent,
numeric_id: COMPONENT_MAP["MHG.Buffer_WithOutput"],
position: vec3_add(*next_position_within, [SQUARE, 0, 0]),
rotation: quaternion::id(),
inputs: vec![input_b],
outputs: vec![output_b],
custom_data: vec![],
};
let peg = lw::Component {
address: *next_address + 2,
parent,
numeric_id: COMPONENT_MAP["MHG.Peg"],
position: vec3_add(*next_position_within, [0, 0, 2 * SQUARE]),
rotation: quaternion::id(),
inputs: vec![peg],
outputs: vec![],
custom_data: vec![],
};
*next_address += 3;
connection_map.insert(
Connection {
cell_index: cell.index,
port_name: "A",
bit_index: i_bit,
},
lw::PegAddress::input(buffer_a.address, 0),
);
connection_map.insert(
Connection {
cell_index: cell.index,
port_name: "B",
bit_index: i_bit,
},
lw::PegAddress::input(buffer_b.address, 0),
);
connection_map.insert(
Connection {
cell_index: cell.index,
port_name: "Y",
bit_index: i_bit,
},
lw::PegAddress::input(peg.address, 0),
);
wires.push(lw::Wire {
first_point: lw::PegAddress::output(buffer_a.address, 0),
second_point: lw::PegAddress::input(peg.address, 0),
circuit_state_id: output_state_id,
wire_rotation: 0.0,
});
wires.push(lw::Wire {
first_point: lw::PegAddress::output(buffer_b.address, 0),
second_point: lw::PegAddress::input(peg.address, 0),
circuit_state_id: output_state_id,
wire_rotation: 0.0,
});
components.push(buffer_a);
components.push(buffer_b);
components.push(peg);
} else {
let component = lw::Component {
address: *next_address,
parent,
numeric_id: COMPONENT_MAP[text_id],
position: *next_position_within,
rotation: quaternion::id(),
inputs: vec![input_a, input_b],
outputs: vec![output],
custom_data: vec![],
};
*next_address += 1;
connection_map.insert(
Connection {
cell_index: cell.index,
port_name: "A",
bit_index: i_bit,
},
lw::PegAddress::input(component.address, 0),
);
connection_map.insert(
Connection {
cell_index: cell.index,
port_name: "B",
bit_index: i_bit,
},
lw::PegAddress::input(component.address, 1),
);
connection_map.insert(
Connection {
cell_index: cell.index,
port_name: "Y",
bit_index: i_bit,
},
lw::PegAddress::output(component.address, 0),
);
components.push(component);
}
},
);
next_position[2] += 5 * SQUARE;
return components;
}
pub fn builder(
height: usize,
parent_address: u32,
next_address: &mut u32,
position: &Vector3<i32>,
components: &mut Vec<lw::Component>,
wires: &mut Vec<lw::Wire>,
connection_map: &mut ConnectionMap,
layer_builder: impl Fn(
usize,
&mut u32,
u32,
&mut Vector3<i32>,
&mut Vec<lw::Component>,
&mut Vec<lw::Wire>,
&mut ConnectionMap,
),
) {
let mount = lw::Component {
address: *next_address,
parent: parent_address,
numeric_id: COMPONENT_MAP["MHG.Mount"],
position: *position,
rotation: quaternion::id(),
inputs: vec![],
outputs: vec![],
custom_data: lw::Mount::new(8).custom_data(),
};
let next_board = lw::Component {
address: *next_address + 1,
parent: mount.address,
numeric_id: COMPONENT_MAP["MHG.CircuitBoard"],
position: [-SQUARE / 2, 3 * SQUARE - SQUARE / 3, -SQUARE / 2],
rotation: quaternion::id(),
inputs: vec![],
outputs: vec![],
custom_data: lw::CircuitBoard::default().with_size(3, 2).custom_data(),
};
*next_address += 2;
let mut next_parent = next_board.address;
components.push(mount);
components.push(next_board);
for i_bit in 0..height {
let mut next_position_within = [SQUARE / 2, SQUARE / 2, SQUARE / 2];
let mount = lw::Component {
address: *next_address,
parent: next_parent,
numeric_id: COMPONENT_MAP["MHG.Mount"],
position: next_position_within,
rotation: quaternion::id(),
inputs: vec![],
outputs: vec![],
custom_data: lw::Mount::new(8).custom_data(),
};
let next_board = lw::Component {
address: *next_address + 1,
parent: mount.address,
numeric_id: COMPONENT_MAP["MHG.CircuitBoard"],
position: [-SQUARE / 2, 3 * SQUARE - SQUARE / 3, -SQUARE / 2],
rotation: quaternion::id(),
inputs: vec![],
outputs: vec![],
custom_data: lw::CircuitBoard::default().with_size(3, 2).custom_data(),
};
*next_address += 2;
next_position_within[0] += SQUARE;
layer_builder(
i_bit,
next_address,
next_parent,
&mut next_position_within,
components,
wires,
connection_map,
);
next_parent = next_board.address;
components.push(mount);
components.push(next_board);
}
}

@ -0,0 +1,5 @@
pub mod unary_op;
pub use unary_op::unary_op;
pub mod binary_op;
pub use binary_op::binary_op;

@ -0,0 +1,50 @@
use logicworld_subassembly::{lw, COMPONENT_MAP};
use vecmath::Vector3;
use crate::verilog::Cell;
use crate::router::{Connection, ConnectionMap, SQUARE};
pub fn unary_op(
cell: &Cell,
text_id: &str,
parent_address: u32,
next_address: &mut u32,
next_position: &mut Vector3<i32>,
_wires: &mut Vec<lw::Wire>,
connection_map: &mut ConnectionMap,
) -> Vec<lw::Component> {
let input = lw::Input::new(cell.inputs["A"][0] as i32);
let output = lw::Output::new(cell.outputs["Y"][0] as i32);
let component = lw::Component {
address: *next_address,
parent: parent_address,
numeric_id: COMPONENT_MAP[text_id],
position: *next_position,
rotation: quaternion::id(),
inputs: vec![input],
outputs: vec![output],
custom_data: vec![],
};
connection_map.insert(
Connection {
cell_index: cell.index,
port_name: "A",
bit_index: 0,
},
lw::PegAddress::input(component.address, 0),
);
connection_map.insert(
Connection {
cell_index: cell.index,
port_name: "Y",
bit_index: 0,
},
lw::PegAddress::output(component.address, 0),
);
*next_address += 1;
next_position[2] += 3 * SQUARE;
return vec![component];
}

@ -1,5 +1,6 @@
mod router; mod router;
mod verilog; mod verilog;
mod cells;
use std::path::Path; use std::path::Path;

@ -1,19 +1,20 @@
use std::{cmp::max, collections::HashMap, f32::consts::PI, fmt::Debug}; use std::{collections::HashMap, f32::consts::PI, fmt::Debug};
use logicworld_subassembly::{lw, COMPONENT_MAP}; use logicworld_subassembly::{lw, COMPONENT_MAP};
use vecmath::{vec3_add, Vector3}; use vecmath::{vec3_add, Vector3};
use crate::verilog::{Cell, Error, Module}; use crate::verilog::{Error, Module};
use crate::cells::*;
// https://yosyshq.readthedocs.io/projects/yosys/en/0.39/CHAPTER_CellLib.html // https://yosyshq.readthedocs.io/projects/yosys/en/0.39/CHAPTER_CellLib.html
const SQUARE: lw::Int = 300; pub const SQUARE: lw::Int = 300;
#[derive(Clone, Copy, PartialEq, Eq, Hash)] #[derive(Clone, Copy, PartialEq, Eq, Hash)]
struct Connection<'a> { pub struct Connection<'a> {
cell_index: usize, pub cell_index: usize,
port_name: &'a str, pub port_name: &'a str,
bit_index: usize, pub bit_index: usize,
} }
impl<'a> Debug for Connection<'a> { impl<'a> Debug for Connection<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
@ -34,7 +35,7 @@ struct Net<'a> {
connected_inputs: Vec<Connection<'a>>, connected_inputs: Vec<Connection<'a>>,
} }
type ConnectionMap<'a> = HashMap<Connection<'a>, lw::PegAddress>; pub type ConnectionMap<'a> = HashMap<Connection<'a>, lw::PegAddress>;
pub fn route(module: Module) -> Result<(Vec<lw::Component>, Vec<lw::Wire>), Error> { pub fn route(module: Module) -> Result<(Vec<lw::Component>, Vec<lw::Wire>), Error> {
let mut net_list: HashMap<usize, Net> = HashMap::new(); let mut net_list: HashMap<usize, Net> = HashMap::new();
@ -337,271 +338,3 @@ fn output_port(
return vec![peg, label]; return vec![peg, label];
} }
fn binary_op(
cell: &Cell,
text_id: &str,
parent_address: u32,
next_address: &mut u32,
next_position: &mut Vector3<i32>,
wires: &mut Vec<lw::Wire>,
connection_map: &mut ConnectionMap,
) -> Vec<lw::Component> {
// All binary RTL cells have two input ports \A and \B and one output port \Y. They also have the following parameters:
// Set to a non-zero value if the input \A is signed and therefore should be sign-extended when needed.
let a_signed = cell.parameters["A_SIGNED"] > 0;
// The width of the input port \A.
let a_width = cell.parameters["A_WIDTH"];
// Set to a non-zero value if the input \B is signed and therefore should be sign-extended when needed.
let b_signed = cell.parameters["B_SIGNED"] > 0;
// The width of the input port \B.
let b_width = cell.parameters["B_WIDTH"];
// The width of the output port \Y.
let y_width = cell.parameters["Y_WIDTH"];
assert!(a_width == b_width, "Different widths not yet supported");
assert!(!a_signed && !b_signed, "Signed not yet supported");
assert!(
a_width == y_width,
"Different widths of input and output not yet supported"
);
let mut next_parent = parent_address;
let mut components = vec![];
let height = max(max(a_width, b_width), y_width);
let mount = lw::Component {
address: *next_address,
parent: next_parent,
numeric_id: COMPONENT_MAP["MHG.Mount"],
position: *next_position,
rotation: quaternion::id(),
inputs: vec![],
outputs: vec![],
custom_data: lw::Mount::new(8).custom_data(),
};
let next_board = lw::Component {
address: *next_address + 1,
parent: mount.address,
numeric_id: COMPONENT_MAP["MHG.CircuitBoard"],
position: [-SQUARE / 2, 3 * SQUARE - SQUARE / 3, -SQUARE / 2],
rotation: quaternion::id(),
inputs: vec![],
outputs: vec![],
custom_data: lw::CircuitBoard::default().with_size(3, 2).custom_data(),
};
*next_address += 2;
next_parent = next_board.address;
components.push(mount);
components.push(next_board);
for i_bit in 0..height {
let mut next_position_within = [SQUARE / 2, SQUARE / 2, SQUARE / 2];
let mount = lw::Component {
address: *next_address,
parent: next_parent,
numeric_id: COMPONENT_MAP["MHG.Mount"],
position: next_position_within,
rotation: quaternion::id(),
inputs: vec![],
outputs: vec![],
custom_data: lw::Mount::new(8).custom_data(),
};
let next_board = lw::Component {
address: *next_address + 1,
parent: mount.address,
numeric_id: COMPONENT_MAP["MHG.CircuitBoard"],
position: [-SQUARE / 2, 3 * SQUARE - SQUARE / 3, -SQUARE / 2],
rotation: quaternion::id(),
inputs: vec![],
outputs: vec![],
custom_data: lw::CircuitBoard::default().with_size(3, 2).custom_data(),
};
*next_address += 2;
next_position_within[0] += SQUARE;
let input_a = lw::Input::new(cell.inputs["A"][i_bit] as i32);
let input_b = lw::Input::new(cell.inputs["B"][i_bit] as i32);
let output_state_id = cell.outputs["Y"][i_bit] as lw::Int;
let output = lw::Output::new(output_state_id);
if text_id == "Custom.OrGate" {
let input_a = lw::Input::new(cell.inputs["A"][0] as lw::Int);
let input_b = lw::Input::new(cell.inputs["B"][0] as lw::Int);
let output_a = lw::Output::new(output_state_id);
let output_b = lw::Output::new(output_state_id);
let peg = lw::Input::new(output_state_id);
let buffer_a = lw::Component {
address: *next_address,
parent: next_parent,
numeric_id: COMPONENT_MAP["MHG.Buffer_WithOutput"],
position: next_position_within,
rotation: quaternion::id(),
inputs: vec![input_a],
outputs: vec![output_a],
custom_data: vec![],
};
let buffer_b = lw::Component {
address: *next_address + 1,
parent: next_parent,
numeric_id: COMPONENT_MAP["MHG.Buffer_WithOutput"],
position: vec3_add(next_position_within, [SQUARE, 0, 0]),
rotation: quaternion::id(),
inputs: vec![input_b],
outputs: vec![output_b],
custom_data: vec![],
};
let peg = lw::Component {
address: *next_address + 2,
parent: next_parent,
numeric_id: COMPONENT_MAP["MHG.Peg"],
position: vec3_add(next_position_within, [0, 0, 2 * SQUARE]),
rotation: quaternion::id(),
inputs: vec![peg],
outputs: vec![],
custom_data: vec![],
};
connection_map.insert(
Connection {
cell_index: cell.index,
port_name: "A",
bit_index: i_bit,
},
lw::PegAddress::input(buffer_a.address, 0),
);
connection_map.insert(
Connection {
cell_index: cell.index,
port_name: "B",
bit_index: i_bit,
},
lw::PegAddress::input(buffer_b.address, 0),
);
connection_map.insert(
Connection {
cell_index: cell.index,
port_name: "Y",
bit_index: i_bit,
},
lw::PegAddress::input(peg.address, 0),
);
wires.push(lw::Wire {
first_point: lw::PegAddress::output(buffer_a.address, 0),
second_point: lw::PegAddress::input(peg.address, 0),
circuit_state_id: output_state_id,
wire_rotation: 0.0,
});
wires.push(lw::Wire {
first_point: lw::PegAddress::output(buffer_b.address, 0),
second_point: lw::PegAddress::input(peg.address, 0),
circuit_state_id: output_state_id,
wire_rotation: 0.0,
});
components.push(buffer_a);
components.push(buffer_b);
components.push(peg);
*next_address += 3;
} else {
let component = lw::Component {
address: *next_address,
parent: next_parent,
numeric_id: COMPONENT_MAP[text_id],
position: next_position_within,
rotation: quaternion::id(),
inputs: vec![input_a, input_b],
outputs: vec![output],
custom_data: vec![],
};
*next_address += 1;
connection_map.insert(
Connection {
cell_index: cell.index,
port_name: "A",
bit_index: i_bit,
},
lw::PegAddress::input(component.address, 0),
);
connection_map.insert(
Connection {
cell_index: cell.index,
port_name: "B",
bit_index: i_bit,
},
lw::PegAddress::input(component.address, 1),
);
connection_map.insert(
Connection {
cell_index: cell.index,
port_name: "Y",
bit_index: i_bit,
},
lw::PegAddress::output(component.address, 0),
);
components.push(component);
}
next_parent = next_board.address;
components.push(mount);
components.push(next_board);
}
next_position[2] += 5 * SQUARE;
return components;
}
fn unary_op(
cell: &Cell,
text_id: &str,
parent_address: u32,
next_address: &mut u32,
next_position: &mut Vector3<i32>,
wires: &mut Vec<lw::Wire>,
connection_map: &mut ConnectionMap,
) -> Vec<lw::Component> {
let input = lw::Input::new(cell.inputs["A"][0] as i32);
let output = lw::Output::new(cell.outputs["Y"][0] as i32);
let component = lw::Component {
address: *next_address,
parent: parent_address,
numeric_id: COMPONENT_MAP[text_id],
position: *next_position,
rotation: quaternion::id(),
inputs: vec![input],
outputs: vec![output],
custom_data: vec![],
};
connection_map.insert(
Connection {
cell_index: cell.index,
port_name: "A",
bit_index: 0,
},
lw::PegAddress::input(component.address, 0),
);
connection_map.insert(
Connection {
cell_index: cell.index,
port_name: "Y",
bit_index: 0,
},
lw::PegAddress::output(component.address, 0),
);
*next_address += 1;
next_position[2] += 3 * SQUARE;
return vec![component];
}

Loading…
Cancel
Save